
Slope Stability

Alessio FERRARI (AF)

Exercise 1 - Solution

BLOCK STABILITY ANALYSIS

Assess the stability of the block ABCD in Fig. 1 considering the different proposed conditions. The block has a width of 1 meter. The characteristics of the slip surface AB and of the vertical joint BC are provided for each condition.

Fig. 1 Block geometry.

Considering the size and weight of the block, the weight of the block can be computed:

$$W = 281.9 \text{ kN}$$

Absence of water in the vertical joint and slip surface

1. Compute F considering the given shear strength parameters.

By imposing the translational equilibrium of the block, the forces parallel and perpendicular to the slip surface can be computed as follows:

$$T = W \sin \alpha$$

$$N = W \cos \alpha$$

Then, the safety factor can be computed as:

$$F = \frac{T_f}{T} = \frac{c'L_1}{W \sin \alpha} + \frac{W \cos \alpha \tan \varphi'}{W \sin \alpha} = \frac{c'L_1}{W \sin \alpha} + \frac{\tan \varphi'}{\tan \alpha}$$

a. $c' = 0, \varphi' = 22^\circ$;

Result: $F = 1.11$

b. $c' = 10 \text{ kPa}$, $\phi' = 22^\circ$;

Result: $F = 1.63$

c. $c' = 0$, $\phi' = 19^\circ$;

Result: $F = 0.95$

d. $c' = 10 \text{ kPa}$, $\phi' = 19^\circ$.

Result: $F = 1.46$

2. For the cases 1.a and 1.b, assess the effects of an additional vertical load (P) on the block stability.

a. $c' = 0$, $\phi' = 22^\circ$;

$$F = \frac{T_f}{T} = \frac{\tan \phi'}{\tan \alpha}$$

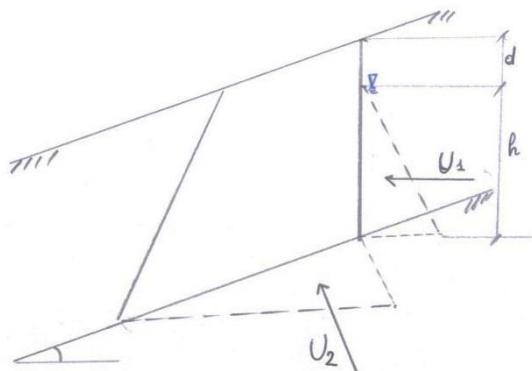
Result: No influence

b. $c' = 10 \text{ kPa}$, $\phi' = 22^\circ$;

$$F = \frac{T_f}{T} = \frac{c'L_1}{(W+P)\sin \alpha} + \frac{\tan \phi'}{\tan \alpha} < \frac{c'L_1}{(W)\sin \alpha} + \frac{\tan \phi'}{\tan \alpha}$$

Result: Lower factor of safety with respect to the case in which no load is applied.

3. For the case 1.b, compute the maximum value of P for which $F \geq 1.3$.


$$F = \frac{c'L}{(W+P)\sin \alpha} + \frac{\tan \phi'}{\tan \alpha} \geq 1.3$$

Result: $P \leq 487.7 \text{ kN}$

Presence of water in the vertical joint and slip surface

1. Assuming $c' = 10 \text{ kPa}$ and $\phi' = 22^\circ$, plot F as a function of the water level depth d in the vertical joint and assess the minimum d for which $F \geq 1.3$, for the following cases:

a. Drainage at the toe (A) is allowed (triangular distribution of the water pressure along L_1);

Fig. 2 Water pressure distributions when the drainage at the toe A is allowed.

Defining:

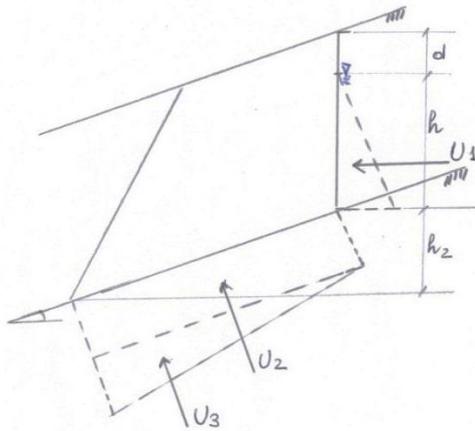
d = depth of the water level

$h = CB - d$ (see Fig. 1)

The forces due to water pressure acting on the slip surface and on the discontinuity can be computed as a function of h :

$$U_1 = \gamma_w \frac{h^2}{2}$$

$$U_2 = \gamma_w \frac{h \cdot AB}{2}$$


with $AB = L_1$

Thus:

$$F = \frac{T_f}{T} = \frac{c'L_1 + (W \cos \alpha - U_2 - U_1 \sin \alpha) \tan \varphi'}{W \sin \alpha + U_1 \cos \alpha} \text{ is a function of } h \text{ (see appendix)}$$

Result: $d = 1.45$ m

b. Drainage at the toe (A) is prevented (hydrostatic distribution through all the discontinuities).

Fig. 3 Water pressure distributions when the drainage at the toe A is not allowed.

Defining:

d = depth of the water level

$h = CB - d$ (see Fig. 1)

$h_2 = AB \sin \alpha$ (see Fig. 1)

The forces due to water pressure acting on the slip surface and on the discontinuity can be computed as a function of h :

$$U_1 = \gamma_w \frac{h^2}{2}$$

$$U_2 = \gamma_w \cdot h \cdot AB$$

$$U_3 = \gamma_w \frac{h_2 \cdot AB}{2}$$

with $AB = L_1$

It follows:

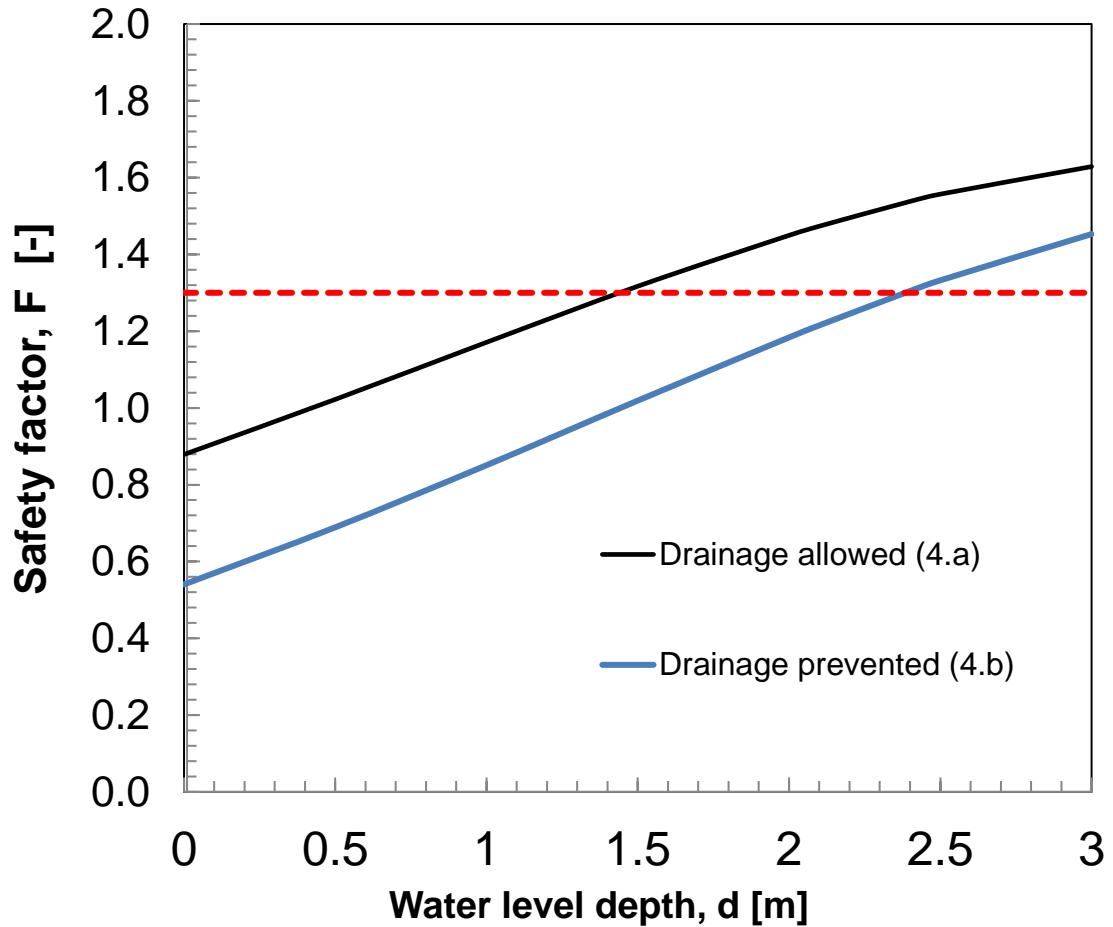
$$F = \frac{T_f}{T} = \frac{c'L_1 + (W \cos \alpha - U_2 - U_3 - U_1 \sin \alpha) \tan \varphi'}{W \sin \alpha + U_1 \cos \alpha} \text{ is a function of } h \text{ (see appendix)}$$

Result: $h_2 = 1.71 \text{ m}$; $U_3 = 41.9 \text{ kN}$; $d = 2.40 \text{ m}$

Appendix

The detailed tables used to reply to questions 4.a and 4.b are given in this Appendix. In addition, a graph summarizing how the safety factor varies with the depth d is shown in a figure. The safety factor limit threshold of 1.3 is also represented in the same graph.

4.a Effect of water – The drainage at the toe A is allowed


ϕ'	22	${}^\circ$	0.38397	rad
$c\ell$	10	kPa		
$W \cos\alpha$	264.9	kN		
$W \sin\alpha$	96.2	kN		
γ_w	9.81	kN/m ³		

d [m]	h [m]	U₁ [kN]	U₂ [kN]	F
0	3	44.15	73.58	0.88
0.25	2.75	37.09	67.44	0.95
0.50	2.5	30.66	61.31	1.02
0.75	2.25	24.83	55.18	1.10
1.00	2	19.62	49.05	1.17
1.25	1.75	15.02	42.92	1.24
1.50	1.5	11.04	36.79	1.32
1.75	1.25	7.66	30.66	1.39
2.00	1	4.91	24.53	1.45
2.25	0.75	2.76	18.39	1.51
2.50	0.5	1.23	12.26	1.56
2.75	0.25	0.31	6.13	1.60
3.00	0	0.00	0.00	1.63

4.b effect of water - The drainage at the toe A is prevented

ϕ'	22	$^{\circ}$	0.38397	rad
$c\ell$	10	kPa		
W cosa	264.9	kN		
W sin α	96.2	kN		
γ_w	9.81	kN/m ³		
h_2	1.71			
U_3	41.94	kN		

d [m]	h [m]	U₁ [kN]	U₂ [kN]	U₃ [kN]	F
0	3	44.15	147.15	41.94	0.54
0.25	2.75	37.09	134.89	41.94	0.61
0.5	2.5	30.66	122.63	41.94	0.69
0.75	2.25	24.83	110.36	41.94	0.77
1	2	19.62	98.10	41.94	0.85
1.25	1.75	15.02	85.84	41.94	0.93
1.5	1.5	11.04	73.58	41.94	1.02
1.75	1.25	7.66	61.31	41.94	1.10
2	1	4.91	49.05	41.94	1.18
2.25	0.75	2.76	36.79	41.94	1.26
2.5	0.5	1.23	24.53	41.94	1.33
2.75	0.25	0.31	12.26	41.94	1.40
3	0	0.00	0.00	41.94	1.45

